

Challenges in Accelerating Graph Machine Learning

Viktor Prasanna University of Southern California prasanna@usc.edu fpga.usc.edu dslab.usc.edu sites.usc.edu/prasanna

March 8, 2024

Graph Analytics

Leverage graph structures to represent, understand, and analyze relationships that exist between entities (people, device
 Example kernels

•Example kernels

•Classic: Centrality, Distances, Connectivity,...

•Recent: GNN, GCN, Temporal GNNs,

•Streaming Graph Analytics

•A stream of (graph) data as input

•Very large data and limited amount of (local) memory

•Online and Approximate Solutions

•Graph databases

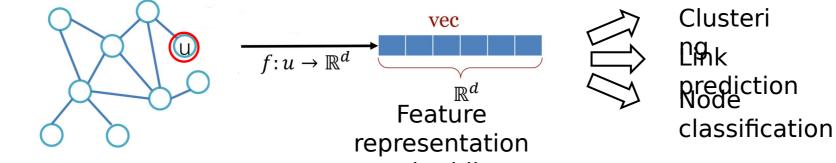
- •NoSQL
- NewSQL

•Neo4J, Tigergraph

[1] Graph exploitation symposium <u>https://events.ll.mit.edu/graphex/</u>
 [2] BigGraphs workshop <u>http://www.biggraphs.org/</u>

Graph Neural Networks (GNNs)

What it does: Embed node features and graph structure into a lowdimensional vector



- Why it is important: Facilitates many downstream applications
- *Tasks:* node classification, link prediction, clustering ...
- Applications: social recommendation, traffic forecast, protein
 Applications of GCNs in commercial systems:
 - Pinterest: web-scale recommender system
 - Alibaba: GCN-based recommendation system for e-commerce

Why Acceleration:

4

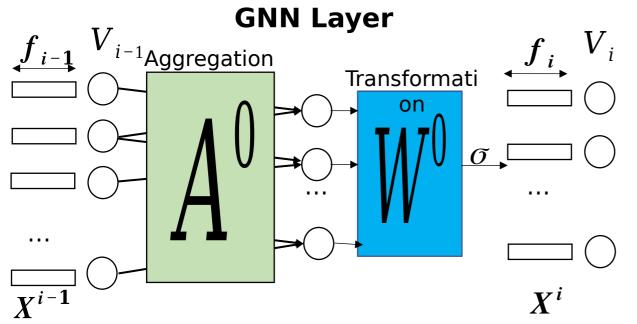
Very large graphs, training can take hours to days Facilitate many real-time downstream applications

GNNs - High Level Abstraction

GNN Parameters

- Number of Layers
 feature size in layer
 Adjacency matrix for
 feature aggregation
 Feature Matrix for
 layer
- : input nodes in layer of GNN
- : number of nodes in layer
- : Target vertices for inference
- : Weight matrix for feature
- transformation

element-wise activation function



Multiple layers are stacked to form a complete GNN model.

Given

Input: Graph: (data) Target Vertices:

GNN Model size

For 2 layer GNN with, 4 bytes per **Model size:** 256 KB

Mini-Batch GNN

Reduce memory usage on large graphs

Layer sampling: sample supporting neighbors layer-by-layer Subgraph sampling: sample subgraphs and build complete GNN on the sampled subgraphs

GNN Computations

Forward Pass Layer Propagation

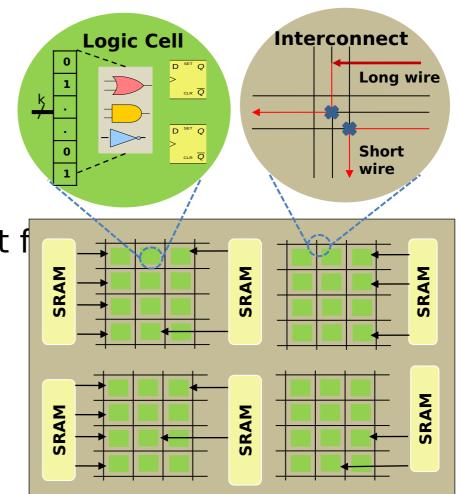
Aggregation - Sparse-dense MM Transformation - Dense MM

Notes

- : sparse matrix. In sampling based approaches, is obtained by sampling which further reduces dimension or increases sparsity
- : dense matrix, typical size: (64 512) X (64 512) entries
- : typical size: 10s K X (64 512)

Acceleration Technology: FPGA

- Field Programmable Gate Arrays
 - Configurable logic blocks (LUT)
 - Programmable interconnect
 - Programmable on-chip memory
- Logic block functionality
 - Simple logic (AND, OR, etc.)—4-input f
 - Shift register memory
- Memory hierarchy
 - LUT-based distributed RAM
 - SRAM (BRAM, M20K,....)
 - External memory through I/O
- Huge on-chip bandwidth (Tbps)



FPGA, Multicore, GPU and Accelerators

Feature	FPGA (Virtex UltraScale+)	FPGA (Stratix 10 NX)	Multicore (Xeon MAX 9480)	GPU (NVIDIA H100)	Al Accelerator (Cerebras WSE)
Parallelism	Fine grained, pipelined	Fine grained, pipelined	Thread/Core level (Task)	SIMT/SMP (Data Parallel)	Core level and Data Parallel
Operating frequency	Up to 825 MHz	Up to 800 MHz	2.6 GHz	1.7 GHz	-
On-chip memory bandwidth	Configurable (8 Tbps)	~8 Tbps	L1: 794 Gbps, L2: 400 Gbps	4~6 Tbps	9.6 Pbps
On-chip memory access latency	1.2 ns	~ 1 ns	L1: 1.2 ns, L2: 3 ns, L3: 15 ns	L1: 1~20 ns	-
On chip Memory	56 MB Block RAM	94.5 Mb eSRAM	112.5 MB Cache	50 MB L2 Cache	18 G SRAM
DDR channels - bandwidth	Up to 32 (HBM) 460 GB/s	(HBM2)-512 GB/s	Up to 8 (DDR5)- 307 GB/s	2-7.8 TB/s	N/A
Power	100 W		350 W	700 W	15 KW
Parallelism	2-12K DSPs	3960 Al Tensor blocks	56 cores 112 Threads	14592 CUDA Cores	400,000 SLAC Cores
Technology	14 nm	14 nm FinFET	10 nm	4 nm	16 nm

19

FPGAs for Graph Analytics

- Challenges
 - Large data volume
 - Irregular memory accesses
 - Limited data reuse
 - High computation complexity (machine learning on graphs)
- Opportunities
 - Emerging memory technologies
 - Large capacity
 - Low access latency
 - High bandwidth
 - New architectures supporting coherent shared-memory
 - Fine-grained acceleration
 - Customized memory controller to handle irregular memory accesses
 - Algorithmic innovation to reduce computation complexity

References

GraphSAINT

- Zeng; Zhou; Srivastava; Kannan; Prasanna; "GraphSAINT: Graph sampling based inductive learning method." ICLR 2020.
- ShaDOW-GNN
 - Zeng; Zhang; Xia; Srivastava; Malevich; Kannan; Prasanna; Jin; Chen. "Deep Graph Neural Networks with Shallow Subgraph Samplers." NeurIPS 2021.
- HP-GNN
 - Lin; Zhang; Prasanna. "HP-GNN: Generating High Throughput GNN Training Implementation on CPU-FPGA Heterogeneous Platform." ACM FPGA 2022.

• HyScale-GNN

- Lin; Prasanna. "HyScale-GNN: A Scalable Hybrid GNN Training System on Single-Node Heterogeneous Architecture." IEEE IPDPS 2023.
- GraphAGILE:
 - Zhang; Zeng; Prasanna. "GraphAGILE: An FPGA-based Overlay Accelerator for Low-latency GNN Inference." IEEE Transactions on Parallel and Distributed Systems (TPDS).

References (Continued)

- Dynasparse
 - Zhang; Prasanna. "Dynasparse: Accelerating GNN Inference through Dynamic Sparsity Exploitation." IEEE IPDPS 2023.
- SeDyT
 - Zhou; James; Kannan; Prasanna; "SeDyT: A General Framework for Multi-Step Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings." CIKM 2021
- HTNet
 - Zhou; Kannan, Swami, Prasanna; "HTNet: Dynamic WLAN Performance Prediction using Heterogenous Temporal GNN" INFOCOM 2023
- DistTGL
 - Zhou; Zheng; Song; Karypis; Prasanna; "DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training" SC 2023

GNN Acceleration?

- GNN applications consist of GNN training and GNN inference
 - GNN training: train GNN model on large-scale graph dataset
 - GNN inference: use trained GNN model for downstream tasks

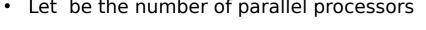
- GNN training:
 - Requirement: need fast (high throughput), accurate and scalable GNN training system that performs on large-scale graph datasets
 - Read-world graphs are large
 - OGB graph: 0.25 billion nodes and 1.7 billion edges (167 GB)
 - AliGraph (Taobao): 0.48 billion nodes and 0.9 billion edges
 - Can take hours to days to train a GNN model using OGB graph on a GPU platform

• GNN inference:

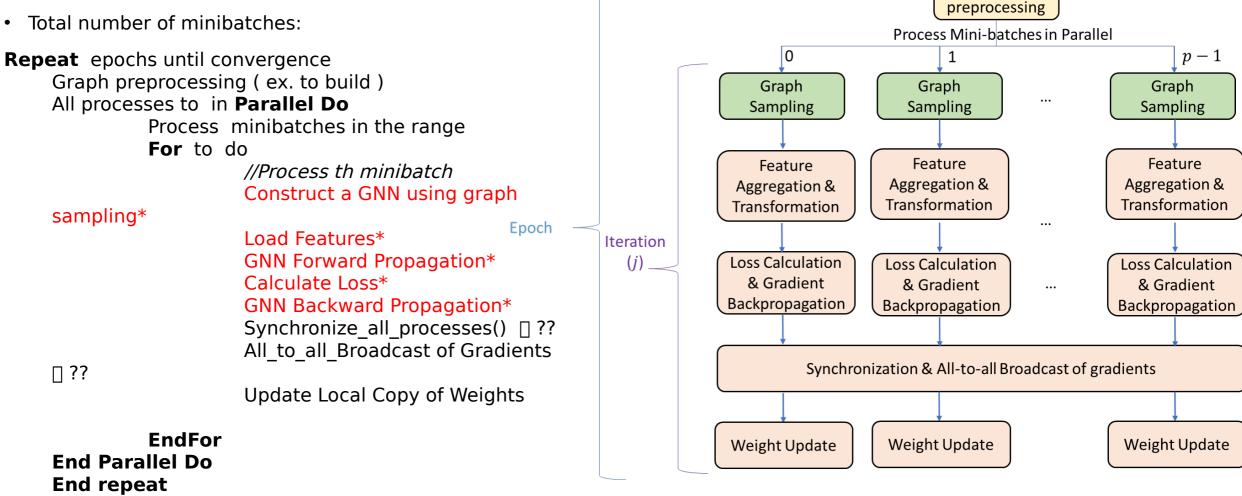
- Requirement: need accurate, lowlatency and high-throughput GNN inference system for GNN application, such as personalized recommendation
- Accuracy and latency is important for quality of service (QoS):
 - Latency in Facebook recommendation system should be within 10-100 ms
- Samples > nodes to inference a single target node

Workflow Abstraction for GNN training (Parallel) Let be the number of parallel processors

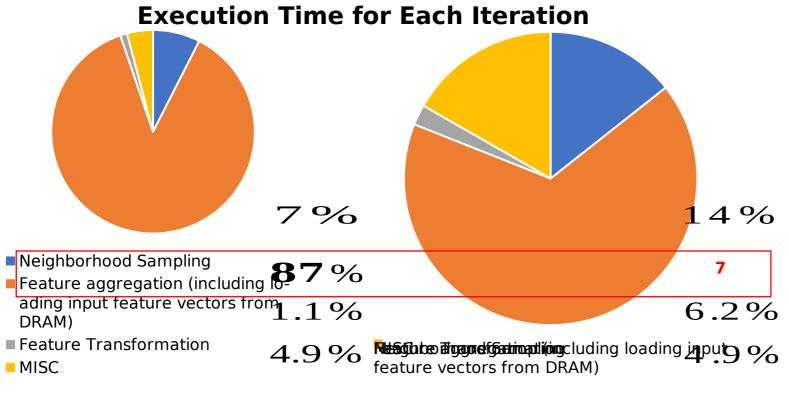
Graph



- Each process stores a local copy of weights ٠
- number of epochs, : size of each mini-batch ٠
- •



GNN Computation Profile



eddit: : 0.23 M, : 11 M leighborhood size: 115,000 er Iteration Time: 2.37 s otal Time: 1064 s Amazon: : 1.6 M, : 0.13 B Neighborhood size: 72,000 Per Iteration Time: 0.197 s Total Time: 615 s

• **Software:** Pytorch Geometric

Platform Specification

- Processor: Intel i9-9900K, 8 Cores with 16 Threads, 4.6 GHz
- DRAM: 80 GB DDR4 with 4 channels, 77 GB/s

Model parameters

- Number of layers: 2
- Sample size: = 25 for two layers
- Minibatch size

Bottleneck: Gathering Feature Vectors (DRAM accesses) + Aggregation (sparse MM)

GNN vs DNN training and inference

	GNN	DNN (e.g. CNNs)	
Model	Small Number of parameters: 10s of thousands Size: 100s of KBs	Large Number of parameters: 10s-100s of millions Size: 10s-100s of MBs	
Data	Size of sample for an inference large compared to model For example: In GraphSAGE, ~16 MB data sample needs to be fetched for one inference on a model of size ~64 KB	Size of sample for an inference small compared to model For example: In Inceptionv3, ~350 KB sized image needs to be fetched for one inference on a model of size 92 MB	
Computation / Communicat ion	 Sparse computations on unstructured data Computations on small matrices (compared to CNNs) For parallel implementations, model synchronization time negligible 	 Dense computations on structured data (unless explicit sparsification techniques used) Computations on large matrices (using im2col, kn2row methods) For parallel implementations, model synchronization time is significant 	

Acceleration Challenges

- Large data size: Real-world graphs can be very large. Does not fit on the FPGA/Processor/GPU on-chip memory.
- Poor data reuse and random memory access: Real-world graphs are unstructured. Feature aggregation is a graph traversal process that leads to poor data reuse and random memory accesses.
- Load imbalance: Real-world graphs have unbalanced degree distribution. There is workload imbalance between the vertices in Feature aggregation, leading to imbalance across mini-batches.
- Heterogenous kernels: Feature aggregation is communication-intensive while the Feature transformation is computation-intensive. Pipelining these two kernels can lead to stalled pipeline execution.
- Variability of input graphs and GNN models: Graphs have various size and sparsity and various GNN models have various parameters.
- Full graph, Sampling based, Training, Inference?

HP-GNN System Architecture

Parallel Computation Kernels

- Multiple kernels distributed to multiple dies
- Multiple dies and multiple DDRs are connected through an all-to-all interconnection

Update Kernel

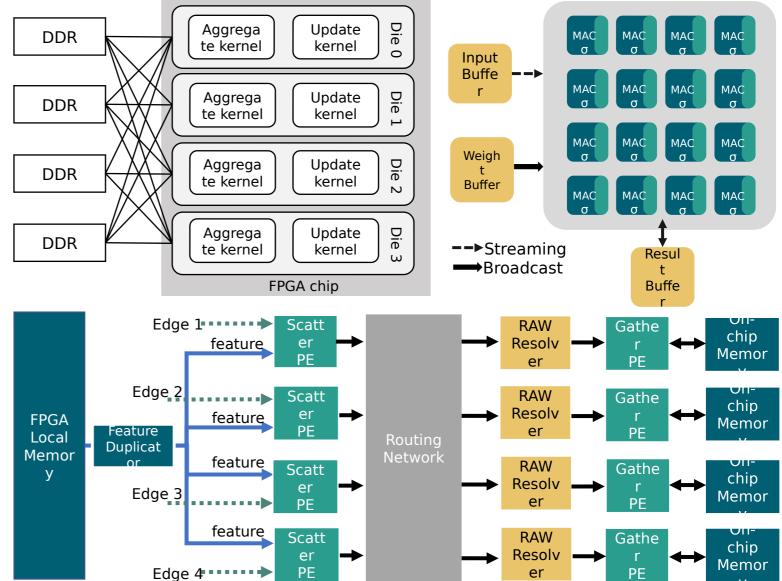
- systolic array
- performs multiplication-accumulation operations in each clock cycle.

Aggregate Kernel

- Aggregation by scatter-gather paradigm
- Feature Duplicator
 - Duplicate feature to all Scatter PEs to exploit data reuse
- Scatter and Gather PEs
 - User-defined scatter/gather function
 - pipelines, each pipeline aggregates features to the Children Line Pipervi Theorem and

Yi-Chienstinationation of the state of the s

HP-GNN: Generating High Throughput GNN Training



→data comes from FPGA local memory · · · · ◆data comes from host via PCIe

Experimental Results

Results

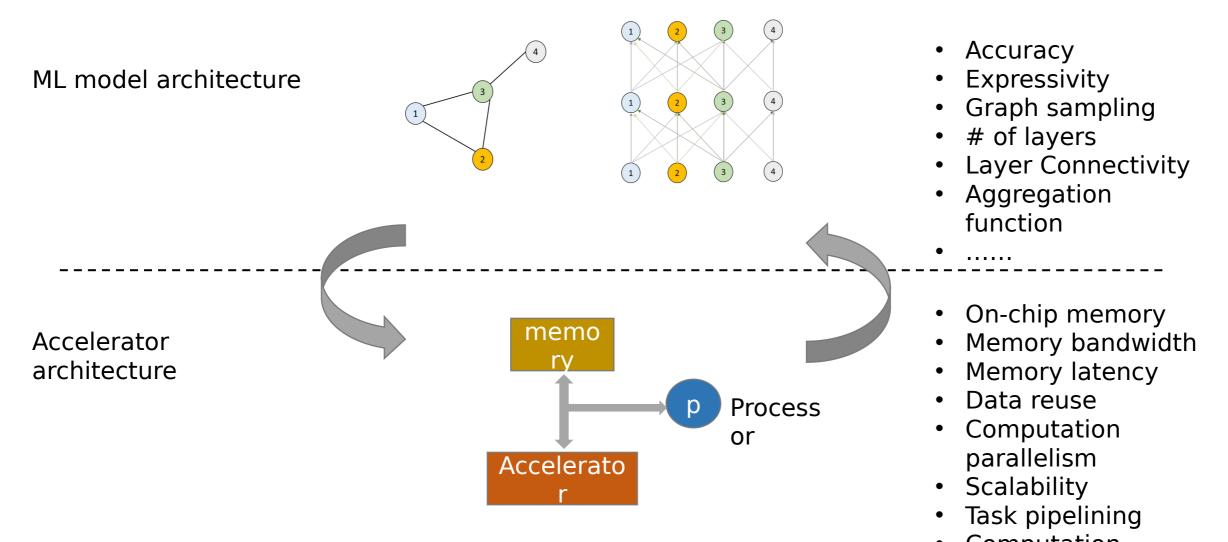
- Comparison of throughput (NVTPS)
- 55.67x speedup over CPU-only
- 2.17x speedup over CPU+GPU
- 3.39x 4.45x speedup over state-ofthe-art accelerators

		GraphACT [27]‡	Rubik [5]	Our work
	Device	Alveo U250	ASIC	Alveo U250
Platform	Peak Perf.	0.6 TFLOPS	1 TFLOPS	0.6 TFLOPS
Flation	Bandwidth	77 GB/s	432 GB/s	77 GB/s
	On-chip Mem.	54 MB	2 MB	54 MB
SS-SAGE	RD	546.8K (1×)	717.0K (1.31×)	2.43M (4.45×)
(Throughput)	ҮР	769.8K (1×)	N/A	2.78M (3.61×)

[‡] Scaled from U200 to U250 using the number of DSPs.

	Data	CPU	CPU-GPU	CPU-FPGA
	FL	265.5K (1×)	2.69M (10.1×)	16.38M (61.7×)
NS-GCN	RD	85.65K (1×)	7.15M (83.5×)	18.50M (216×)
INS-GCIN	YP	275.6K (1×)	9.36M (34.0×)	24.61M (89.2×)
	AM	480.6K (1×)	13.0M (29.0×)	29.26M (60.8×)
	FL	225.2K (1×)	2.74M (12.2×)	11.84M (52.6×)
NS-SAGE	RD	78.50K (1×)	6.90M (88.0×)	13.10M (166×)
NS-SAGE	YP	266.0K (1×)	9.19M (34.5×)	18.12M (68.1×)
	AM	479.3K (1×)	13.57M (28.3×)	21.15M (44.1×)
	FL	215.2K (1×)	768.3K (3.59×)	2.81M (13.0×)
SS-GCN	RD	118.9K (1×)	536.4K (4.51×)	2.56M (21.5×)
55-0CN	YP	159.1K (1×)	751.0K (4.71×)	3.08M (19.4×)
	АМ	25.55K (1×)	OoM	1.47M (57.5×)
	FL	179.9K (1×)	626.7K (3.48×)	2.71M (15.1×)
SS-SAGE	RD	94.72K (1×)	505.2K (5.33×)	2.43M (25.6×)
33-3AGE	YP	126.7K (1×)	709.7K (5.60×)	2.78M (22.0×)
	АМ	17.40K (1×)	ОоМ	1.45M (83.3×)
Average		193.4K (1×)	4.96M (25.66×)	10.77M (55.67×)

GNN algorithm-architecture co-design



Zeng; Zhang; Xia; Srivastava; Malevich; Kannan; Prasanna; Jin; Chen. "Deep Graph Neural Networks with Shallow Subgraph Samplers." NeuRIPS 2021. Computation complexity

•

5

Thanks

fpga.usc.edu dslab.usc.edu <u>prasanna@usc.edu</u> sites.usc.edu/prasanna

Team

Rajgopal Kannan **Research Faculty**

Yang

Yang

Tian

Ye

Google

U.S. DEPARTMENT OF

Zhang

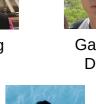
DARPA

Nikunj

Gupta

(intel) XILINX

Yuxin Yang



Dhruv Parikh

