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Graph Analytics
•Leverage graph structures to represent, understand, and analyze
relationships that exist between entities (people, devices, …)
•Example kernels

•Classic: Centrality, Distances, Connectivity,..
•Recent: GNN, GCN, Temporal GNNs, ….

•Streaming Graph Analytics
•A stream of (graph) data as input
•Very large data and limited amount of (local) memory
•Online and Approximate Solutions

•Graph databases
•NoSQL
•NewSQL
•Neo4J, Tigergraph

[1] Graph exploitation symposium  https://events.ll.mit.edu/graphex/
[2] BigGraphs workshop  http://www.biggraphs.org/

https://events.ll.mit.edu/graphex/
http://www.biggraphs.org/


Graph Neural Networks (GNNs)
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What it does: Embed node features and graph structure into a low-
dimensional vector

Feature 
representation 

embeddingWhy it is important: Facilitates many downstream 
applications
• Tasks: node classification, link prediction, clustering …
• Applications: social recommendation, traffic forecast, protein 

analysis

Clusteri
ngLink 
predictionNode 
classification

Why Acceleration: 
Very large graphs, training can take hours to days
Facilitate many real-time downstream applications

Applications of GCNs in commercial systems:
• Pinterest: web-scale recommender system
• Alibaba: GCN-based recommendation system for 

e-commerce
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GNNs – High Level Abstraction

Input: Graph:  (data)
Target Vertices: 

Given: Number of Layers
: feature size in layer 
: Adjacency matrix for 
feature aggregation
: Feature Matrix for 
layer 

: input nodes in layer  of GNN
: number of nodes in layer 
: Target vertices for inference 
: Weight matrix for feature 
transformation
 element-wise activation function 

GNN Parameters

𝑊 𝑙

𝑓 𝑙
𝑓 𝑙−1

 
For 2 layer GNN with, 4 
bytes per entry
Model size: 256 KB

GNN Model size

𝐴0 𝑊 0
𝒇 𝒊−𝟏

…

𝜎

𝒇 𝒊

……

Aggregation
Transformati

on

𝑉 𝑖−1 𝑉 𝑖

GNN Layer

Multiple layers are stacked to form a complete GNN model.
𝑿 𝒊−𝟏 𝑿 𝒊

Reduce memory usage on large 
graphs
Layer sampling: sample supporting 
neighbors layer-by-layer
Subgraph sampling: sample 
subgraphs and build complete GNN on 
the sampled subgraphs

Mini-Batch GNN
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GNN Computations
           Forward Pass Layer 
Propagation

Aggregation - Sparse-dense MM Transformation - Dense MM

Notes
• : sparse matrix. In sampling based approaches,  is obtained by sampling which further 

reduces dimension or increases sparsity
• : dense matrix, typical size: (64 - 512) X (64 - 512) entries
• : typical size: 10s K X (64 – 512)
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Acceleration Technology: FPGA
• Field Programmable Gate Arrays

 Configurable logic blocks (LUT)
 Programmable interconnect
 Programmable on-chip memory

• Logic block functionality
 Simple logic (AND, OR, etc.)—4-input function
 Shift register memory

• Memory hierarchy
 LUT-based distributed RAM
 SRAM (BRAM, M20K,….)
 External memory through I/O

• Huge on-chip bandwidth (Tbps)

Interconnect

Long wire

Short 
wire

Q

QSET

CLR

D

Q

QSET

CLR

D

Logic Cell
0

1

.

.

0

1

k

DSP blocks

SR
AM

SR
AM

SR
AM

SR
AM

SR
AM SR

AM



FPGA, Multicore, GPU and Accelerators
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Feature
FPGA 
(Virtex 

UltraScale+)
FPGA

(Stratix 10 NX)
Multicore 

(Xeon MAX 
9480)

GPU 
(NVIDIA H100)

AI Accelerator
(Cerebras 

WSE)

Parallelism Fine grained, 
pipelined

Fine grained, 
pipelined

Thread/Core level
(Task)

SIMT/SMP
(Data Parallel)

Core level and
Data Parallel

Operating 
frequency Up to 825 MHz Up to 800 MHz 2.6 GHz 1.7 GHz -

On-chip 
memory 
bandwidth

Configurable 
(8 Tbps) ~8 Tbps L1: 794 Gbps,

L2: 400 Gbps 4~6 Tbps 9.6 Pbps

On-chip 
memory 
access 
latency

1.2 ns ~ 1 ns L1: 1.2 ns, 
L2: 3 ns, L3: 15 ns L1: 1~20 ns -

On chip 
Memory

56 MB
Block RAM

94.5 Mb 
eSRAM

112.5 MB
Cache

50 MB 
L2 Cache

18 G
SRAM

DDR channels 
- bandwidth

Up to 32 (HBM)
460 GB/s (HBM2)-512 GB/s Up to 8 (DDR5)-

307 GB/s 2-7.8 TB/s N/A

Power 100 W 350 W 700 W 15 KW

Parallelism 2-12K DSPs 3960 AI Tensor 
blocks

56 cores
112 Threads

14592
CUDA Cores

400,000
SLAC Cores

Technology 14 nm 14 nm FinFET 10 nm 4 nm 16 nm
# of 
Transistors 35 billion 43 billion 8 billion 80 billion 1.2 trillion

Peak 
Performance 
(TOPS/TFLOP
S)

INT16: 50.2
INT4 or BFP12: 

286 
INT8 or BFP16: 

143 
FP32: 4.38 FP16: 204.9

FP32: 51.22 FP32: 40.6
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FPGAs for Graph Analytics
• Challenges 

• Large data volume
• Irregular memory accesses 
• Limited data reuse
• High computation complexity (machine learning on graphs)

• Opportunities
• Emerging memory technologies

• Large capacity
• Low access latency
• High bandwidth

• New architectures supporting coherent shared-memory
• Fine-grained acceleration 
• Customized memory controller to handle irregular memory accesses
• Algorithmic innovation to reduce computation complexity



2
4

References
• GraphSAINT

• Zeng; Zhou; Srivastava; Kannan; Prasanna; “GraphSAINT: Graph sampling 
based inductive learning method.” ICLR 2020.

• ShaDOW-GNN
• Zeng; Zhang; Xia; Srivastava; Malevich; Kannan; Prasanna; Jin; Chen. “Deep 

Graph Neural Networks with Shallow Subgraph Samplers.” NeurIPS 2021.
• HP-GNN

• Lin; Zhang; Prasanna. "HP-GNN: Generating High Throughput GNN Training 
Implementation on CPU-FPGA Heterogeneous Platform." ACM FPGA 2022.

• HyScale-GNN
• Lin; Prasanna. “HyScale-GNN: A Scalable Hybrid GNN Training System on 

Single-Node Heterogeneous Architecture.” IEEE IPDPS 2023.
• GraphAGILE:

• Zhang; Zeng; Prasanna. “GraphAGILE: An FPGA-based Overlay Accelerator for 
Low-latency GNN Inference.” IEEE Transactions on Parallel and Distributed 
Systems (TPDS).



2
5

References (Continued)
• Dynasparse

• Zhang; Prasanna. “Dynasparse: Accelerating GNN Inference through Dynamic 
Sparsity Exploitation.” IEEE IPDPS 2023.

• SeDyT
• Zhou; James; Kannan; Prasanna; “SeDyT: A General Framework for Multi-Step 

Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings.” 
CIKM 2021

• HTNet
• Zhou; Kannan, Swami, Prasanna; “HTNet: Dynamic WLAN Performance 

Prediction using Heterogenous Temporal GNN” INFOCOM 2023
• DistTGL

• Zhou; Zheng; Song; Karypis; Prasanna; “DistTGL: Distributed Memory-Based 
Temporal Graph Neural Network Training” SC 2023



2
6

GNN Acceleration?
• GNN applications consist of GNN training and GNN inference 

• GNN training: train GNN model on  large-scale graph dataset
• GNN inference: use trained GNN model for downstream tasks

• GNN training:
• Requirement: need fast (high 

throughput), accurate and 
scalable GNN training system that 
performs on large-scale graph 
datasets

• Read-world graphs are large
• OGB graph: 0.25 billion nodes 

and 1.7 billion edges (167 GB)
• AliGraph (Taobao): 0.48 billion 

nodes and 0.9 billion edges
• Can take hours to days to train a GNN 

model using OGB graph on a GPU 
platform

• GNN inference:
• Requirement: need accurate, low-

latency and high-throughput GNN 
inference system for GNN 
application, such as personalized 
recommendation

• Accuracy and latency is important 
for quality of service (QoS):

• Latency in Facebook 
recommendation system should be 
within 10-100 ms

• Samples >  nodes to inference a 
single target node
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Workflow Abstraction for GNN training 
(Parallel) • Let  be the number of parallel processors

• Each process stores a local copy of weights 
•  number of epochs, :  size of each mini-batch
• Total number of minibatches: 
Repeat  epochs until convergence

Graph preprocessing ( ex. to build )
All processes to  in Parallel Do

Process  minibatches in the range  
For  to  do

//Process th minibatch
Construct a GNN using graph 

sampling*
Load Features*
GNN Forward Propagation*
Calculate Loss*
GNN Backward Propagation*
Synchronize_all_processes()   ??
All_to_all_Broadcast of Gradients 

 ??
Update Local Copy of Weights

EndFor
End Parallel Do
End repeat

*See Previous Slide
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GNN Computation Profile 

Neighborhood Sampling
Feature aggregation (including lo-
ading input feature vectors from 
DRAM)
Feature Transformation
MISC

• Software: Pytorch Geometric

• Platform Specification
• Processor: Intel  i9-9900K, 8 Cores 

with 16 Threads, 4.6 GHz
• DRAM: 80 GB DDR4 with 4 channels, 

77 GB/s

• Model parameters
• Number of layers: 2
• Sample size:  = 25 for two layers
• Minibatch size 

Bottleneck: Gathering Feature Vectors (DRAM accesses) + Aggregation (sparse MM)

7%

𝟖𝟕%
1.1%

4.9%

Reddit:  : 0.23 M, : 11 M
Neighborhood size: 115,000
Per Iteration Time: 2.37 s
Total Time: 1064 s

Amazon:  : 1.6 M, : 0.13 B
Neighborhood size: 72,000
Per Iteration Time: 0.197 s
Total Time: 615 s

Execution Time for Each Iteration

Neighborhood SamplingFeature aggregation (including loading input 
feature vectors from DRAM)
Feature TransformationMISC

14%

7

6 .2%

4 .9%
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GNN vs DNN training and inference
GNN DNN (e.g. CNNs)

Model Small
Number of parameters: 10s of 
thousands
Size: 100s of KBs

Large
Number of parameters: 10s-100s of 
millions
Size: 10s-100s of MBs 

Data Size of sample for an inference large 
compared to model

For example: In GraphSAGE,  ~16 MB 
data sample needs to be fetched for 
one inference on a model of size ~64 
KB

Size of sample for an inference small 
compared to model

For example: In Inceptionv3, ~350 KB 
sized image needs to be fetched for one 
inference on a model of size 92 MB

Computation
/
Communicat
ion

• Sparse computations on unstructured 
data

• Computations on small matrices 
(compared to CNNs)

• For parallel implementations, model 
synchronization time negligible

• Dense computations on structured 
data (unless explicit sparsification 
techniques used)

• Computations on large matrices (using 
im2col, kn2row methods)

• For parallel implementations, model 
synchronization time is significant



Acceleration Challenges
• Large data size: Real-world graphs can be very large. Does not fit on the 

FPGA/Processor/GPU on-chip memory.

• Poor data reuse and random memory access: Real-world graphs are unstructured. 
Feature aggregation is a graph traversal process that leads to poor data reuse and random 
memory accesses.

• Load imbalance: Real-world graphs have unbalanced degree distribution. There is 
workload imbalance between the vertices in Feature aggregation, leading to imbalance 
across mini-batches.

• Heterogenous kernels: Feature aggregation is communication-intensive while the 
Feature transformation is computation-intensive. Pipelining these two kernels can lead to 
stalled pipeline execution.

• Variability of input graphs and GNN models: Graphs have various size and sparsity 
and various GNN models have various parameters.

• Full graph, Sampling based, Training, Inference?
31



HP-GNN System Architecture

Aggregate Kernel
• Aggregation by scatter-gather 

paradigm
• Feature Duplicator

• Duplicate feature to all Scatter 
PEs to exploit data reuse

• Scatter and Gather PEs
• User-defined scatter/gather 

function
•  pipelines, each pipeline 

aggregates  features to the 
destination vertices in each 
clock cycle.

Update Kernel
•  systolic array 
• performs  multiplication-accumulation 

operations in each clock cycle.

3
4

DDR

DDR

DDR

DDR

Aggrega
te kernel

Update 
kernel

Aggrega
te kernel

Update 
kernel

Aggrega
te kernel

Update 
kernel

Aggrega
te kernel

Update 
kernel

FPGA chip
Die 0

Die 1
Die 2

Die 3

FPGA
Local

Memor
y

Scatt
er
PE

Routing
Network

Feature 
Duplicat

or

Edge 1

Edge 4

Edge 2

Edge 3

: data comes from host via PCIe: data comes from FPGA local memory

On-
chip

Memor
y

On-
chip

Memor
y

On-
chip

Memor
y

On-
chip

Memor
y

feature

feature

feature

feature

Gathe
r

PE

Gathe
r

PE

Gathe
r

PE

Gathe
r

PE

RAW
Resolv

er

RAW
Resolv

er

RAW
Resolv

er

RAW
Resolv

er

Scatt
er
PE

Scatt
er
PE

Scatt
er
PE

Input
Buffe

r

Weigh
t

Buffer

Resul
t

Buffe
r

Broadcast

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

MAC  
σ 

Streaming

Parallel Computation Kernels
• Multiple kernels distributed to multiple dies
• Multiple dies and multiple DDRs are 

connected through an all-to-all 
interconnection

Yi-Chien Lin, Bingyi Zhang, and Viktor 
Prasanna. 
HP-GNN: Generating High 
Throughput GNN Training 
Implementation on CPU-FPGA 
Heterogeneous Platform, ACM 
FPGA 2022.
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Experimental Results
• Results

• Comparison of throughput (NVTPS)
• 55.67x speedup over CPU-only
• 2.17x speedup over CPU+GPU
• 3.39x - 4.45x speedup over state-of-

the-art accelerators
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GNN algorithm-architecture co-design

ML model architecture

Accelerator 
architecture

• Accuracy
• Expressivity
• Graph sampling
• # of layers
• Layer Connectivity
• Aggregation 

function
• ……

memo
ry

Accelerato
r

p Process
or

• On-chip memory
• Memory bandwidth
• Memory latency
• Data reuse
• Computation 

parallelism
• Scalability
• Task pipelining
• Computation 

complexity
• ……

Zeng; Zhang; Xia; Srivastava; Malevich; Kannan; Prasanna; Jin; Chen. “Deep 
Graph Neural Networks with Shallow Subgraph Samplers.” NeuRIPS 2021.
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