
Challenges in Accelerating Graph Machine
Learning

Viktor Prasanna
University of Southern California

prasanna@usc.edu
fpga.usc.edu dslab.usc.edu

sites.usc.edu/prasanna

March 8, 2024

mailto:prasanna@usc.edu
http://ceng.usc.edu/~prasanna

3

Graph Analytics
•Leverage graph structures to represent, understand, and analyze
relationships that exist between entities (people, devices, …)
•Example kernels

•Classic: Centrality, Distances, Connectivity,..
•Recent: GNN, GCN, Temporal GNNs, ….

•Streaming Graph Analytics
•A stream of (graph) data as input
•Very large data and limited amount of (local) memory
•Online and Approximate Solutions

•Graph databases
•NoSQL
•NewSQL
•Neo4J, Tigergraph

[1] Graph exploitation symposium https://events.ll.mit.edu/graphex/
[2] BigGraphs workshop http://www.biggraphs.org/

https://events.ll.mit.edu/graphex/
http://www.biggraphs.org/

Graph Neural Networks (GNNs)

4

What it does: Embed node features and graph structure into a low-
dimensional vector

Feature
representation

embeddingWhy it is important: Facilitates many downstream
applications
• Tasks: node classification, link prediction, clustering …
• Applications: social recommendation, traffic forecast, protein

analysis

Clusteri
ngLink
predictionNode
classification

Why Acceleration:
Very large graphs, training can take hours to days
Facilitate many real-time downstream applications

Applications of GCNs in commercial systems:
• Pinterest: web-scale recommender system
• Alibaba: GCN-based recommendation system for

e-commerce

5

GNNs – High Level Abstraction

Input: Graph: (data)
Target Vertices:

Given: Number of Layers
: feature size in layer
: Adjacency matrix for
feature aggregation
: Feature Matrix for
layer

: input nodes in layer of GNN
: number of nodes in layer
: Target vertices for inference
: Weight matrix for feature
transformation
 element-wise activation function

GNN Parameters

𝑊 𝑙

𝑓 𝑙
𝑓 𝑙−1

For 2 layer GNN with, 4
bytes per entry
Model size: 256 KB

GNN Model size

𝐴0 𝑊 0
𝒇 𝒊−𝟏

…

𝜎

𝒇 𝒊

……

Aggregation
Transformati

on

𝑉 𝑖−1 𝑉 𝑖

GNN Layer

Multiple layers are stacked to form a complete GNN model.
𝑿 𝒊−𝟏 𝑿 𝒊

Reduce memory usage on large
graphs
Layer sampling: sample supporting
neighbors layer-by-layer
Subgraph sampling: sample
subgraphs and build complete GNN on
the sampled subgraphs

Mini-Batch GNN

8

GNN Computations
 Forward Pass Layer
Propagation

Aggregation - Sparse-dense MM Transformation - Dense MM

Notes
• : sparse matrix. In sampling based approaches, is obtained by sampling which further

reduces dimension or increases sparsity
• : dense matrix, typical size: (64 - 512) X (64 - 512) entries
• : typical size: 10s K X (64 – 512)

9

Acceleration Technology: FPGA
• Field Programmable Gate Arrays

 Configurable logic blocks (LUT)
 Programmable interconnect
 Programmable on-chip memory

• Logic block functionality
 Simple logic (AND, OR, etc.)—4-input function
 Shift register memory

• Memory hierarchy
 LUT-based distributed RAM
 SRAM (BRAM, M20K,….)
 External memory through I/O

• Huge on-chip bandwidth (Tbps)

Interconnect

Long wire

Short
wire

Q

QSET

CLR

D

Q

QSET

CLR

D

Logic Cell
0

1

.

.

0

1

k

DSP blocks

SR
AM

SR
AM

SR
AM

SR
AM

SR
AM SR

AM

FPGA, Multicore, GPU and Accelerators

19

Feature
FPGA
(Virtex

UltraScale+)
FPGA

(Stratix 10 NX)
Multicore

(Xeon MAX
9480)

GPU
(NVIDIA H100)

AI Accelerator
(Cerebras

WSE)

Parallelism Fine grained,
pipelined

Fine grained,
pipelined

Thread/Core level
(Task)

SIMT/SMP
(Data Parallel)

Core level and
Data Parallel

Operating
frequency Up to 825 MHz Up to 800 MHz 2.6 GHz 1.7 GHz -

On-chip
memory
bandwidth

Configurable
(8 Tbps) ~8 Tbps L1: 794 Gbps,

L2: 400 Gbps 4~6 Tbps 9.6 Pbps

On-chip
memory
access
latency

1.2 ns ~ 1 ns L1: 1.2 ns,
L2: 3 ns, L3: 15 ns L1: 1~20 ns -

On chip
Memory

56 MB
Block RAM

94.5 Mb
eSRAM

112.5 MB
Cache

50 MB
L2 Cache

18 G
SRAM

DDR channels
- bandwidth

Up to 32 (HBM)
460 GB/s (HBM2)-512 GB/s Up to 8 (DDR5)-

307 GB/s 2-7.8 TB/s N/A

Power 100 W 350 W 700 W 15 KW

Parallelism 2-12K DSPs 3960 AI Tensor
blocks

56 cores
112 Threads

14592
CUDA Cores

400,000
SLAC Cores

Technology 14 nm 14 nm FinFET 10 nm 4 nm 16 nm
of
Transistors 35 billion 43 billion 8 billion 80 billion 1.2 trillion

Peak
Performance
(TOPS/TFLOP
S)

INT16: 50.2
INT4 or BFP12:

286
INT8 or BFP16:

143
FP32: 4.38 FP16: 204.9

FP32: 51.22 FP32: 40.6

2
2

FPGAs for Graph Analytics
• Challenges

• Large data volume
• Irregular memory accesses
• Limited data reuse
• High computation complexity (machine learning on graphs)

• Opportunities
• Emerging memory technologies

• Large capacity
• Low access latency
• High bandwidth

• New architectures supporting coherent shared-memory
• Fine-grained acceleration
• Customized memory controller to handle irregular memory accesses
• Algorithmic innovation to reduce computation complexity

2
4

References
• GraphSAINT

• Zeng; Zhou; Srivastava; Kannan; Prasanna; “GraphSAINT: Graph sampling
based inductive learning method.” ICLR 2020.

• ShaDOW-GNN
• Zeng; Zhang; Xia; Srivastava; Malevich; Kannan; Prasanna; Jin; Chen. “Deep

Graph Neural Networks with Shallow Subgraph Samplers.” NeurIPS 2021.
• HP-GNN

• Lin; Zhang; Prasanna. "HP-GNN: Generating High Throughput GNN Training
Implementation on CPU-FPGA Heterogeneous Platform." ACM FPGA 2022.

• HyScale-GNN
• Lin; Prasanna. “HyScale-GNN: A Scalable Hybrid GNN Training System on

Single-Node Heterogeneous Architecture.” IEEE IPDPS 2023.
• GraphAGILE:

• Zhang; Zeng; Prasanna. “GraphAGILE: An FPGA-based Overlay Accelerator for
Low-latency GNN Inference.” IEEE Transactions on Parallel and Distributed
Systems (TPDS).

2
5

References (Continued)
• Dynasparse

• Zhang; Prasanna. “Dynasparse: Accelerating GNN Inference through Dynamic
Sparsity Exploitation.” IEEE IPDPS 2023.

• SeDyT
• Zhou; James; Kannan; Prasanna; “SeDyT: A General Framework for Multi-Step

Event Forecasting via Sequence Modeling on Dynamic Entity Embeddings.”
CIKM 2021

• HTNet
• Zhou; Kannan, Swami, Prasanna; “HTNet: Dynamic WLAN Performance

Prediction using Heterogenous Temporal GNN” INFOCOM 2023
• DistTGL

• Zhou; Zheng; Song; Karypis; Prasanna; “DistTGL: Distributed Memory-Based
Temporal Graph Neural Network Training” SC 2023

2
6

GNN Acceleration?
• GNN applications consist of GNN training and GNN inference

• GNN training: train GNN model on large-scale graph dataset
• GNN inference: use trained GNN model for downstream tasks

• GNN training:
• Requirement: need fast (high

throughput), accurate and
scalable GNN training system that
performs on large-scale graph
datasets

• Read-world graphs are large
• OGB graph: 0.25 billion nodes

and 1.7 billion edges (167 GB)
• AliGraph (Taobao): 0.48 billion

nodes and 0.9 billion edges
• Can take hours to days to train a GNN

model using OGB graph on a GPU
platform

• GNN inference:
• Requirement: need accurate, low-

latency and high-throughput GNN
inference system for GNN
application, such as personalized
recommendation

• Accuracy and latency is important
for quality of service (QoS):

• Latency in Facebook
recommendation system should be
within 10-100 ms

• Samples > nodes to inference a
single target node

2
8

Workflow Abstraction for GNN training
(Parallel) • Let be the number of parallel processors

• Each process stores a local copy of weights
• number of epochs, : size of each mini-batch
• Total number of minibatches:
Repeat epochs until convergence

Graph preprocessing (ex. to build)
All processes to in Parallel Do

Process minibatches in the range
For to do

//Process th minibatch
Construct a GNN using graph

sampling*
Load Features*
GNN Forward Propagation*
Calculate Loss*
GNN Backward Propagation*
Synchronize_all_processes() ??
All_to_all_Broadcast of Gradients

 ??
Update Local Copy of Weights

EndFor
End Parallel Do
End repeat

*See Previous Slide

2
9

GNN Computation Profile

Neighborhood Sampling
Feature aggregation (including lo-
ading input feature vectors from
DRAM)
Feature Transformation
MISC

• Software: Pytorch Geometric

• Platform Specification
• Processor: Intel i9-9900K, 8 Cores

with 16 Threads, 4.6 GHz
• DRAM: 80 GB DDR4 with 4 channels,

77 GB/s

• Model parameters
• Number of layers: 2
• Sample size: = 25 for two layers
• Minibatch size

Bottleneck: Gathering Feature Vectors (DRAM accesses) + Aggregation (sparse MM)

7%

𝟖𝟕%
1.1%

4.9%

Reddit: : 0.23 M, : 11 M
Neighborhood size: 115,000
Per Iteration Time: 2.37 s
Total Time: 1064 s

Amazon: : 1.6 M, : 0.13 B
Neighborhood size: 72,000
Per Iteration Time: 0.197 s
Total Time: 615 s

Execution Time for Each Iteration

Neighborhood SamplingFeature aggregation (including loading input
feature vectors from DRAM)
Feature TransformationMISC

14%

7

6 .2%

4 .9%

3
0

GNN vs DNN training and inference
GNN DNN (e.g. CNNs)

Model Small
Number of parameters: 10s of
thousands
Size: 100s of KBs

Large
Number of parameters: 10s-100s of
millions
Size: 10s-100s of MBs

Data Size of sample for an inference large
compared to model

For example: In GraphSAGE, ~16 MB
data sample needs to be fetched for
one inference on a model of size ~64
KB

Size of sample for an inference small
compared to model

For example: In Inceptionv3, ~350 KB
sized image needs to be fetched for one
inference on a model of size 92 MB

Computation
/
Communicat
ion

• Sparse computations on unstructured
data

• Computations on small matrices
(compared to CNNs)

• For parallel implementations, model
synchronization time negligible

• Dense computations on structured
data (unless explicit sparsification
techniques used)

• Computations on large matrices (using
im2col, kn2row methods)

• For parallel implementations, model
synchronization time is significant

Acceleration Challenges
• Large data size: Real-world graphs can be very large. Does not fit on the

FPGA/Processor/GPU on-chip memory.

• Poor data reuse and random memory access: Real-world graphs are unstructured.
Feature aggregation is a graph traversal process that leads to poor data reuse and random
memory accesses.

• Load imbalance: Real-world graphs have unbalanced degree distribution. There is
workload imbalance between the vertices in Feature aggregation, leading to imbalance
across mini-batches.

• Heterogenous kernels: Feature aggregation is communication-intensive while the
Feature transformation is computation-intensive. Pipelining these two kernels can lead to
stalled pipeline execution.

• Variability of input graphs and GNN models: Graphs have various size and sparsity
and various GNN models have various parameters.

• Full graph, Sampling based, Training, Inference?
31

HP-GNN System Architecture

Aggregate Kernel
• Aggregation by scatter-gather

paradigm
• Feature Duplicator

• Duplicate feature to all Scatter
PEs to exploit data reuse

• Scatter and Gather PEs
• User-defined scatter/gather

function
• pipelines, each pipeline

aggregates features to the
destination vertices in each
clock cycle.

Update Kernel
• systolic array
• performs multiplication-accumulation

operations in each clock cycle.

3
4

DDR

DDR

DDR

DDR

Aggrega
te kernel

Update
kernel

Aggrega
te kernel

Update
kernel

Aggrega
te kernel

Update
kernel

Aggrega
te kernel

Update
kernel

FPGA chip
Die 0

Die 1
Die 2

Die 3

FPGA
Local

Memor
y

Scatt
er
PE

Routing
Network

Feature
Duplicat

or

Edge 1

Edge 4

Edge 2

Edge 3

: data comes from host via PCIe: data comes from FPGA local memory

On-
chip

Memor
y

On-
chip

Memor
y

On-
chip

Memor
y

On-
chip

Memor
y

feature

feature

feature

feature

Gathe
r

PE

Gathe
r

PE

Gathe
r

PE

Gathe
r

PE

RAW
Resolv

er

RAW
Resolv

er

RAW
Resolv

er

RAW
Resolv

er

Scatt
er
PE

Scatt
er
PE

Scatt
er
PE

Input
Buffe

r

Weigh
t

Buffer

Resul
t

Buffe
r

Broadcast

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

MAC
σ

Streaming

Parallel Computation Kernels
• Multiple kernels distributed to multiple dies
• Multiple dies and multiple DDRs are

connected through an all-to-all
interconnection

Yi-Chien Lin, Bingyi Zhang, and Viktor
Prasanna.
HP-GNN: Generating High
Throughput GNN Training
Implementation on CPU-FPGA
Heterogeneous Platform, ACM
FPGA 2022.

3
7

Experimental Results
• Results

• Comparison of throughput (NVTPS)
• 55.67x speedup over CPU-only
• 2.17x speedup over CPU+GPU
• 3.39x - 4.45x speedup over state-of-

the-art accelerators

5
2

GNN algorithm-architecture co-design

ML model architecture

Accelerator
architecture

• Accuracy
• Expressivity
• Graph sampling
• # of layers
• Layer Connectivity
• Aggregation

function
• ……

memo
ry

Accelerato
r

p Process
or

• On-chip memory
• Memory bandwidth
• Memory latency
• Data reuse
• Computation

parallelism
• Scalability
• Task pipelining
• Computation

complexity
• ……

Zeng; Zhang; Xia; Srivastava; Malevich; Kannan; Prasanna; Jin; Chen. “Deep
Graph Neural Networks with Shallow Subgraph Samplers.” NeuRIPS 2021.

Thanks

fpga.usc.edu
dslab.usc.edu

prasanna@usc.edu
sites.usc.edu/prasanna

mailto:prasanna@usc.edu

5
9

Team

Rajgopal Kannan
Research Faculty

Hongkuan
Zhou

Yuan
Meng

Sasindu
 Wijeratne

Bingyi
Zhang

Tian
Ye

Yang
Yang

Jason
Lin

Pengmiao
Zhang

Ta-Yang
Wang

Samuel
Wiggins

Omer
Akgul

Nikunj
Gupta

Sachini
Wickramasinghe

Zhihan
 Xu

Yuhong
Liu

Dhruv
Parikh

Gangda
Deng

Xu
Wang

Yuxin
Yang

	Challenges in Accelerating Graph Machine Learning
	Graph Analytics
	Graph Neural Networks (GNNs)
	GNNs – High Level Abstraction
	GNN Computations
	Acceleration Technology: FPGA
	FPGA, Multicore, GPU and Accelerators
	FPGAs for Graph Analytics
	References (2)
	References (Continued)
	GNN Acceleration?
	Workflow Abstraction for GNN training (Parallel)
	GNN Computation Profile
	GNN vs DNN training and inference
	Acceleration Challenges
	HP-GNN System Architecture
	Experimental Results
	GNN algorithm-architecture co-design
	Thanks
	Team

